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Abstract -
The _papss-—psesents sinple methods for the design of adsptive force and position '5 ey #J
controllers fur robut mamipulators withia the hydbrid control lreh!tcctnrof’1i:—__—ﬂ—_. / /767 2 ,

force coatroller is composed of am adaptive PID feedback controller, an
suxiliary signal and a force feedforward term; and it sachieves trsckiag of
desired force setpoints in the constraint directioms. The position controller
consists of adaptive feedback and feedforward controllers and an ausiliary
signal; and it accomplishes tracking of desiced position trajectories in the
free directions, The controllers are capable of compensating for dynamic cross-
couplings that exist between the position and force conmtrol loops in the hybrid
control architecture. The adaptive controllers do not require knowledge of the
complex dynamic model or parameter values of the manipulator or the envirosment,
The proposed contro]l schemes sre computationally fest and suitsdle for
implementation in oa-line control with higa sampling rates.

1. Introduction

Although control of robot manipulators has been studied extensively in recent yesrs, this stody hss been
focused primarily oa position control of manipulators in free motion within an unconstrained environmect. Ia
many practical applications, the manipulator ls constrainmed by the environment and certsin degrees-of-freedrm
sre lost for motion doe to environmental constraints., Whes the manipulator makes contact with the eavironment,
the contact forces must be controlled in the constraint directions, while the positionss are contzolled
simultaneously in the free directions.

The probles of manipulator control ia & cons®rained environment has been investigated dy several
researchers [1]. At preseat, three major conceptual approaches exist for simultaneous position and force
control. Paul and Shimano {2] suggest a metbod which uses certain joints for position contrcl while the
remaining joints are used for force coatrol. Salisbury [J] puts forward a technique for controlling the end-
effector stiffness characteristics in the Cartesian space. Raibert and Craig [4] propose s conceptual
architecture, based on the analysis of Mason (5], for "hybrid control™ which sllows forces to be controlled in
the constraint directions by a force controller, while simultaneously controlling positions in the free
directions by a position controller. Raibert and Cralg, however, do not prescribe a genersl and systsmatic
method for the design of position snd force comtrollers. Nevertheless., hybrid control has gained considerable
popularity over the other two alternatives for simultaneous positioan and force comtrol [6-13]).

The present paper pots forth systematic methods for the design of adaptive force and position controllers
within the hybrid control architectuore. The force controller achieves tracking of desired force setpoints,
while the position controller accomplishes tracking of desired position trajectories. The force and positiom
controller gains are gonerated by adaptation laws by means of simple arithmoetic operations, and thus the
controllers are computationally fast and suitable for om-line implementation with high sampling rates. The
adaptive controllers do not require knowledge of the complex dynamic model or parameter velues of the
manipulator or the emvironment.

The paper is structured ss follows, In Section 2, the hybrid control architecture is outlined snd the
problem is stated. "Section 3 addresses the design of force control] system using model reference adaptive
control (MRAC) theory. The design of position control system is discussed dbriefly in Section 4. In Section §,
the force and position controllers are integrated in the bybrid control architecture. Finally, Section 6
discusses the results of the paper and draws some conclusjons.
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2, Problem Statemest

Ins this section, the hybrid force/positios® comtrol architecture is discussed briefly, and the force sad
position tracking control problems sre stated.

Let us cossider s robot sanipulator which performs s ssmber of different tasks im s Cartesiss space (x).
Each task, in geners), involves motion of the mamipslator emd-effector in certaim directions asd,
simultaneously, exertion of force by the ead-effector oa the envirosment in the remsiniang direotioss {s). The
directions of motion and force depend om the mature of the particslar task to be performed sad are reflected is
the "task matriz® in the Bybrid control architeoture showa in Figure 1. The task matrix also containms the
transformations required to map the messurements § and P, of joint encoders and force/torque sensors fiatoe
position and force varisbles in the comstrajut frsme defined vith respect to the task geometry [4]). Note thst
the desired force snd position trajectories ars elso specified im the constraint frame. For amy gives task,
the a~-dimensional Cartesian spsce {X) can be decomposed isto two orthogonal L- snd s-dimensional ssbspaces (Y)
snd (Z), where m = £ + m. The "position subspsce” {Y) comtains the L directions (i.e., degrees-of-freedom) ia
which the manipulator end-effector is free to move sad sloag which gnd-effector posjtios is to be contrelled
The "force subspace” {Z) contains the remsining w directions im whioh the manipulstor end-effecter is
constrained by and interacts with the envirooment and along which the goptagt force is to be conmtrolled.

In the hybrid force/position control probles addressed in this paper, we consider the "virtsal® Cartesiss
force F acting on the end-effector ss the manipulated variable end the position or force of the end-effector ss
the controlled variables [14]. The hybrid control architecture is based on two indspendent and noa-icterscting
controllers ss shown in Figure 1; namely, the pesitions controller which operates in (Y) snd the force
controller which scts in (Z). The position controller generates the Cartesian end-effector force F, required
to cause the end-effector motion to track a desired positios trajectory in {Y). The force controller produces
the Cartesisn end-effector force P, needed to ensure that the end-effector force follows ¢ desired forece
setpoint in (Z). Since we canaot physically epply Cartesian forces to the end-effector, we instead compute and
implement the equivalent joiat torques nesded to effectively ceuse these forces. The required joint torques
are obtained from the Cartesisa forces by mesns of the Jacobian matrix J(8) of the manipulator, where ¢ is the
joint angle vector,

We shall now address the problems of force and position coatrol separately In Sections 3 and 4 ssd thes
integrate the results in Section §. . e

3. Design of Force Control System

To this section, s simple dynsmic model for force control in the subspace (Z) is described, amd as
adaptive force control scheme is developed.

3.1 Dynsmig Force Mode]

The full dynamic model of the end-effector plus force/torque sensor im contact with the esvironmemt is
complex [15]. Bowever, the dynamic behsvior of this systes csn be modelled approximately by a mass-spring-
damper in each degres-of-freedom as shown jan Figure 2 and descrided by the differential equation

mf(t) + 4 2(e) ¢+ k 2(t) = £(¢) 1)

Generalizing this simple model to the m-dimensions] force subspace (Z], the dynamic bebavior of the system is
(Z) can be expressed by the differeatial equation

M,Z(t) + DZ(t) + K,Z(t) = Fy(t) @

where Z(t) is rhe mzl end-effector position/orientstion vector, M, is the symametric positive-definjite min
generalized mass watrix, D, is the mzm generelized damping watrix, K, is the diagons]l mzm generslized stiffmess
matrix sod F, is the mxl force vector applied to the end-effector in the force sudbspace (Z]). The elememts of
K, sre the "equivalent” translational (force) sad rotational (torque) coefficients of eissticity (stiffaoes)

of the system iso various directions in {Z}, By ss sppropriante choice of the {Z] subspace origia, the m1l
force/torque vector P(t) ezerted by ths emd-effector om the envirooment is related to Z(t) dy the
generalization of Hooke's law ds

B(t) = K Z(v) 3
From equations (2) snd (3), we obtain
A B(t) + B B(t) o P(t) = E,(¢) “

where A = Hol;l snd B = I)‘.,l'.'1 are mxa matrices. Equation (4) gives a simple dynamic model of the system im the
force subspace {Z]. Since the manipulator dynsmics is bighly momlinesr, tbe matrices A and B ia equatiom (4)
are dependent on the end-effector Cartesian position and velocity vectors X and % and also oa the systen
parameters such as the equivalent stiffoness and the payload mass, which are represented by the parsmeter vector
p. Furthermore, due to intermal cross-coupling of the msmipulator dynamics, & "disturdance” term _CP(I) must be
included in equstion (4) to represent the dynamic coupling from the positiom loop imto the force loop, where I

® In this paper, "position” implies position and orientstion and "force” implies force and torque.
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is the end-effeotor positios vector ia (Y}, Thus, & more reslistie model for force control is obtained s»

ALE2) Beo) + BB ¢ RO+ D) = B0 )

Bquation (5) 1s & eet of highly complex noalinesr and coupled seeond-order differential equations.

3.2 Pezxes Co

In oréer to sostrol the force/tosque P(t) ezerted by the end-effector on the enviroament, let us employ s
PID controller vwith sdaptive gains (Ey(t), Kp(t), Kp(t)) and an ssxiliary sigasl 4(t) ia the foree escatrol law

t .
Eg(t) = Rele) ¢ Kp(t) E(t) ¢ Ep(0) J; B(e)ae + Kp(t) R(t) + 4(¢) ({})

vhoze P_(t) is the mxl vector of desized fozee trajestory weed as & feedforvard term, ssd the mxl force
trasking-esror veetor R(t) = P () = P(t) Ls the doviation of the setnal (messured) foree from the desired
value., BSinee in preactiesnl spplications the desired fozee trasjestozry is very oftes s eomstasmt setpeiat Bett) =
C,» the PID control lav is partieslazly esitadble for this situatien. Fugtdermore, ths asziliary sigaal 4(t)
sompessstes for the eross-eouplisg term Oy and the time and pesemeter variations of A snd B matrices. Note
that the feedforvard tezm P (t) is ineluded in the control lav (6) sinee 1deally ws want P(t) = Pelt). 1Ia
squation (), the gains of the PID costroller, samely l,(t). Ky(t) snd Kp(t), snd slso the auzilisry sigasl
4(¢) are sdapted in real-time to ascomplish foreo setpoist traeking ia spite of the soslinear aad poseibly time-
varying behavior of the systes model (3).

On applying the lisear costrol law (6) to the system model (5), we obtsia
. R t
AR ¢ BRI ¢ B ¢ Gy = Bt ¢ KB ¢ 1y j; B(t)de + Kphit) + 4(t) ™M

Using B(t) = P (¢t) - P(t) end noting that E£(t) = -P(t) and i(l) e ~F(t) for a constant desired force, equation
(7) can be writtem as

B » A 1m e Ky Fe) o AT ) B(t) + A7l E°(e) = a7l (g, - g)) s)

vhere B°(1) = fo‘ B(t)dt is the mal iategral error veotor. [Equatios (8) can be ezpressed inm stasdard state-

space form ss

0 1, 0 0
dz, (t)
g 0 0 1, Fo(t) + ° (9
-l arlery -A"1(BeKy) A,
3 1Y)
vhere g (t) = g(t)
B(t)

is the 3Jmz!l augmented error vector. Eqeation (9) comstitutes the “adjustable systema” iz the MRAC framework.

Now, in the ideal situation, the desired behavior of the force error E_(t) is descridbed by the homogemeous
dif{ferential equation

Eo(0) o DyE (1) o DyES(t) + DES(E) = @ (10)

vhere Dy, Dy and Dy are constant mxm matrices which sre chosem such that equation (10) is stable asd emdodies
the desired performance of the force coatrol system. By choosimg Dy, Dy end D3 as diagonal matrices, the force
errors will be decoupled: for iastance

E_ (1) o dq by (t) o a (t) ® dy (B2 (t) = 0 an
i 3i%mi 2i%mi 11i“mi

wvhere the coefficients dyy, dy; and d3; are chosen such that the trackiag-error E (¢t} = P ;(2) - P‘(” has ¢
desired behavior and dy;dyy > dy; to emswre stadility. BEquation (10) cen be written as

. 0 Ig o
Ialt) = 0 0 In | 3a(t) = D 300 (a2
by b -D
Ey(1)
where 3 _(t) = i:((t)) is the 3mxl desired error vector. Equation (12) constitutes the "refearence sodel” in
t

the context of MRAC theory. Simce the imitial values of the actual and desired forces are often the same, the
ianitial error 3,(0) is equal to zero, sad hence from equatiom (12), go(t) = exp(Dt) : 3 (0) = Q for all t.
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Now, is order for the adjnstable systes state 3, (t) to tend to the reference iodcl stete 3,(t) = g
ssymptotieally, fzom Reference [16] we require

°
o | =a! g, qpni, (130)
A
° ° ° 1, 0 o
0 0 0 J=ofluzzs | 0 Mml, ©
ity otk alb 6 0 nL
.zx. [} ]
s} ud g o 1, 0 (13%)
at 0 0 ,”L

where * ° ® donotes tramepositios, ley, §;, v1) aze positive sealars, {83, §3. v3) are sere or positive

soalars, asd L is sn mxm constant matriz to be specified later. Is equation (13), @, and Q; sze symaetrie
positive-definite 3mzdm matrices, 0: and 0; sre syametrio positive semi-definite Jmalm matrices, and the

symmetric positive-definite Juzdm matriz

N My N
= wy m omg
My Mg Ng

is the solution of the Lyspusov equation for the referemce model (12), samely
ND+D'Ne=-N (14)

where N is & symmetric positive-defiaite 3ms3a matriz. Ia deriviag equatioa (13), the matrices A B, and ‘t is
the robot model (3) age sssumed to be uakunows and "slovly time-varying” compared with the adaptation slgoriths,
simce these matrices cammot ohaage sigaificantly is cech sampling imterval whiodh is of the order of o
millisecond. Now, ia order to make the costroller adaptation lavse jadependsnt of the model matriz A, we e¢hoose

Q - :1 A* Qg = A* ; Q)= 83(A%17 Q] = (Ae)°! s

where “l' 83} are positive asmd zero or positive scslsrs, asd

A (/] 0
A® - 0 A 0 ) is & symmetric positive-defiaite Imzlim matriz.
[} 0 A

Substituting from equatiom (13) into equatios (13), after simplification ws obtaia the adaptatios laws

d(t) = 8ya(r) +» By8(t) (16)
E(e) = oyla(e) B* ()] + o §rlate) o (e)) an
Ep(e) = Byla(e) B ()] o By Llatv) B (1)) as)
Ep(e) = vylat) B (OIL) + 1q flato Bron (19

where g(t) is the a3l "weighted" force error vector defised as

g(t) = My ge(e) o Mg B(t) + Mg B(t) (20)

and N3, Mg, Mg tre sppropriate submatrices of N. Thus, the required asziliary signal snd PID costroller gainms
agre obtained as

t
20 = 400 » 8y f “gtnrar ¢ sye(e) (21)

t
Kj(t) = K400) + 01.'; g(t) E*°(t)dt + ayqlt) E*(2) (22)
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A

K (t) = K (0) + py Io a(t) B (e)ae + pag(t) B(2) (29)
[t l. .

Ep(t) = Ep(0) ¢ 75 J s(e) B (ILde ¢ yaute) BreeiL (24)

The foree sestzel law is then gives by
t
Bg(t) = B o(t) ¢ 4(t) ¢ Kplt) Io E(t)de ¢ l'(t)l(t) * l,,mim (13)

It is seted that the anxzilisry signsl 4(1) ean Yo gesersted by o P13D contsoller drives by the fores error R(t)
since, frem equations (20)-(21), 4(t) esn be expressed as

#(0) = 4(0) * [auglE(n) » [8;Mg ¢ BMg)R(L)

t t t
v 1agg o aymg) f'Be0rae o tagmy) J {fo l(cm}u
Is practieca]l implemestatios of smy foree eontrol law, differestistion of the moisy fores messsrement P(t)
is uadesiredle and, soreever, differestistion of the eosstant fores sstpoint [S produces savaated impslses.

Thie argument suggests that the derivative B(t) is oquations (20), (24) and (25) must be replaced by -l.t(n
wsing equation (J). This yields the lisear sdaptive foree ocomtrol lew

t s
Eg(t) = P (t) + 4(t) + Kg(t) fo E(t)de + Eo(t)R(t) - K, (£)Z(2) (26)

wvhiek is shown ia Figure 3, where K (t) = Kp(t)E, is the mxm velooity feeddack gain matriz and the ters
l'(t)t(t) represeats veloeity damping. Choosing L = (l;l)z. the adaptstion laws now decome

t
4(t) « 4(0) + 8, fo 2(t)dt + Baq(t) (a1)
t
Ep(e) = Ep(0) + ag f sl (04t ¢ aae(0IB (1) (20)
f‘ . .
L) = k000 + gy Jo a(OB (Dde + gra(0B (1) (29)
t . . '
L(t) = (00 - 7y fo a(0i (et - yaat0i () (30)
where
2(8) = NyEe(t) + MgB(t) - MGZ(t) (31)

and I; = NgKq. It can be shawa that by proper seleetion of matrix N ia the Lyaspusov equation (14), the

ssbuatrices Ny, Ny and Ng {n equation (20) cas be made equal to the desired values ¥y, W, snd Vp = ¥ K, °!
respectively, asnd hemce equation (31) becomes

a(t) = ¥iBe(e) + W E(t) - Wk(¢) (32)

where ¥y, ¥, aad ¥, are the nzxm disgonst weighting matrices ohosen by the designer to zeflect the relstive

sigaificance of the istegral error B®,. the force error £, and the velooity i. respeotively, From squatioss
{27)-(30), the gemeral expressiom for a typical comtroller gaism K(t) which scts on the sigmal y(t) to genmerate
the term K(t)y(t) im the costrol law (26) cas be writtea as

t
K(t) = K(0) + 4, j; 1)y’ (£)de + uag(tly’ (t) 33)

where 4; sad g3 are scalsr gaiss. This computation cea de performed by s simple "sdaptations ncdele® showa i

the bloock disgrem of Figure 4 {For d(t), ve set y = 1), The adeptation module acts on the two ispst signsls
a(t) amd y(t) to produce the output sigasl K(t)y(t). The force comtrol lav (26) can thes de coastructed by
parallel cosmection of four such modmles.

The force coatrol scheme developed ia this section is extremely simple, since the sdaptation laws (27)-

(30) gemerate the controller gaims by meass of simple integration usiag, for instamce, the trapezoidal rule is
equation (33) cas be implemented as
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(1) = K(4-1) + gy - I.l (a()y’ (1) +» gl1-1)3°(i-1)] ¢ pylg(i)x’ (1)) (34)
1

vhere the integer | domotes the sampling imstent and T, s the sampling period. As s result, the force coamtrol
law (26) can de evaluate! very rapidly snd comsequestly, the foree coatrol soheme csas de imploemented for resl-
time costrol with high sampling retes (typically 1 Kis)., Bigh ssaplisg rate is very dosizabdle is foroe soatrol
spplicatioas and yields isproved dyasnic performence, The asdsptation lavs (27)-(30) éo not require the
complex soalisear model of masipulstor dymamics (3) or say kaowledge of parameters of the masmipsiator or the
environment. This is dwe to the fsot that the adaptive foree eomtroller has "learsing sapabilities” and cas
tapidly sdapt itself to gross chamges iz the manipulator or the eavirosmeat parameters.

4. Desiga of Positios Control System

Is this section, s dymamic model for position control in the subspace (Y} is descrided and an adaptive
positios comtrol scheme is wriefly ezplained,

4.1
The dysamics of the ead-effector ia the CIICOIII:.I”UO {X) cem be represested dy (!ﬂr

ADE s o3 B s uD o R _ (s

where A is the Cartesins mass matrix, ¢ is the Cartesians cestrifugs]l, Coriolis end frictios veetor, ¥ is the
Cartesian gravity loadisg vector, P is the foree vector ezerted by the end-effector oa the eavirosment, amd [
is tis gemeralized "virteal™ Cartesisa force vector spplied to the ead-effector. Ian the positios subspace (Y],
equation (35) cam be writtes ss [17)

AQL B T e B E @) X0+ CoUI £ @) X(O ¢ ) = (0 (36)

where the L1l matrices A, B, C, are highly comples soalinear fusctioss of ], i sad the system parsmeters D, (¢
represents the dynamic couplimg effect from the force loop iato ths positios loop which is & fuaction of the
force gpetor P is (Z), end E’ is the Lz} force vector applied to the snd-effector in the positioa subspace (Y},
Equatioa (36) is & set of highly comples noalinesr and coupled secosd-order differential eqnrations.

4.2 Poslitjon Coptrol Schewe
The Cartesian positios control scheme is developed fully ia Reference {1B]. For the sake of completeness,
the results are susmarized ia this sectiosa,

The linesr adaptive position control law is givem by

Ey(t) = f(x) » Kv(t)E’(t) . l,(;\'g’(t) ¢ C(OIR(L) + B(tIR(t) ¢ A(ni(t) - (37

as shown is Figure 3, where Q{t) i+ the L3] roference {(desired) positios trajectory vector, l’(g) - B(2) - X(t)
i» the 131 position tracking~error vector, f(t) is sa swziliary sigmal, and [lpE, + x,g,) and {C} + BR *AR] are

the countributions duwe to the feedback and feedforverd controllers respectively. The required assiliary sigaal
and controller gains are adapted accordiug to the following laws:

t
Lo = g0+ 8y frera s sypcn) (38)
t
G0 = 600 + vy [ B (DAt ¢ rypt0gy (1) (39
t o .
K (t) = £,(0) » ng J; EOE) (e + a0 (1) (40)
t
Cle) = €0 + uy fHOR (e ¢ upr (O (e (41)
t . Y
B(t) = B(0) + yy _I; g(t)R' (t)de ¢ yar(e)R’(t) (42)
t - .
A = a0 v oy f o roRma s oo (43)

where the 221 "weighted® position error vector g(t) is defined as
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£(t) = VR (0) + W B (1) )

In equations (38)-(43), {8y, »y, wy, #5. 73, A1) are positive soslars, (83, »3, w3, K3, 73, A3} 870 positive or
sero scalars, ond ', and ¥, are vol.htll.‘-ntllcon.lpoolllod by the designer to refliect the telative
significence of the position and velocity errors l, and l,. Note that from equations (38)-(43), the costroller
gains can bo computed using the gang adaptstion "nodule” as in Section 4 (eqn. 33) showr im Figere 4. It is
seon that the position eontsrol scheme is extroemely simple since the controller gains are obtasined from
oquations (38)-(43) by simple istegratios (sweh as trapeszoidal rule) and thus the computations! time required
to evaluate the position conmtrol law (37) is extremely short. Thus, the position comtrol scheme can de
implemented for om-1ime coatrol with high sampling ratee (~ 1 IHs), resslting in improved dyasmic performance.

S. Bybrid Porce/Position Control Systea

Ia Seetions 3 and 4, the Cartesinn end-effestor forces B, and [, are genorated by the force sad positioa
esontrollers to aceomplioh foroe and position tracking ia (Z) and (Y) respectively. Simce Cartesisn forces
esnnot be applied to the ead-effestor ia prastise, these ead-effeotor forces must be mapped iato the equivaleant
Joist torques. Thus, ia order to implemeat the force and positios costrollers, the coutrol lav ia joiat space
is givea by {19]

Eg(t)
I(e) » I (Q) (43)
[,(t)

where § is the azxl joiat amgle vector, T is the mxl joiat torqee veotor, sad J is the axs Jacobisn sstriz of
the manipulstor, with sppropriate reorderiag of the columas of J if necessary.

It is important to note that elthough the force and positios controllers are separate in the hydrid
control architecture, there exists dymamic oross-coupling from the Jorce gomtrol loop into the positionm comtrol
loop and vice versa. This coupliag is due to the fact that the esd-effeotor dysamics in the Cartesian space
{X) Ls stromgly cross~coupled; i.e. the spplication of end~effector force in any difrection affects the ond-
effector positions im all disections. The oross-cospling effects are modelled as "disturbance” terss C_ and Cr
ia the force and positios control loops. The adaptive controllers are capedls of compensating for these
disturbances amd maintaisisg s good tracking performance. The abjility to cope with cross-couplinmg effects in
the hybrid control sgohitecture is an importaat feature of the adaptive control schemes of Sectioms 3 and 4.

6. Discussion and Conclusioas

Simple sdaptive force and position control schemes for sanipulators ism e hybrid conmtrol architecture are
described in thia paper. The control schemes are computstionally fast and do not require the complex dynamic
mode]l or paraseter values of the manipulator or the environment. The force and position control loops are
stable since the design is based ¢co the Lyapunov msethod which guarantees stadility as & by-product of the
design. . °

There are certain differeaces betwesa the proposed spprosch and the conventional hybrid costrol of Rsibert
and Craig (4], Firstly, in the present approach, the force and position comtrol problems are formulated in the
Cartesian space with the end-effector Cartesian forces as the manipulated variables; whereas in [4]), the
prodblems are formulated in the joint space. The proposed formulation results im computations]l improvement
since iaverse Jacobiasns are not needed in the control loops. Secondly, in the proposed approach, the "task
matriz® operstes os the measured varisebles so as to produce the position and force variables that need to be
controlled; wheress in [4], s selection matriz and its complement are used after formation of tracking-errors,
The present spprosch seems more straightforward and appealing thea the conveotionsl approach.

An sttractive feature of the adaptive controllers designed in this paper is their abilities to compensate
for dynamic cross-couplings thet exist between the position and force control loops in the hybrid control
architecture. Furthermore, the adaptive force and positioam controllers have "learning capabilities" to cope
with vapredictable changes in the manipulator or environment parameters such as the stiffness This is due to the
fact that the controller gains are adapted rapidly on the basis of the manipulator performance. The low
computational requirements make the proposed control schemes suitadble for implementation in on-line hybrid
coatrol with high sampling rates.
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Figure 3. Adaptive Force Control System
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Figure 4. Structure of the Basic Adaptation Module
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